
Feed Protocol
Solana Program Security Audit
by IronNode from April 30 - May 15, 2024

ironnode.io

1 Executive overview 3

1.1 Introduction 4

1.2 Audit Summary 4

Objectives of the Audit 5

1.3 Scope 5

Code Repositories 5

1.4 Assessment Summary & Findings Overview 6

2 Application Flow Analysis 7

2.1 User Role 8

Description 8

Functions 8

2.2 Admin Role 9

Description 9

Functions 9

3 Findings 10

3.1 Non-Present Fallback Addresses of Off-chain Components (Resolved) 11

Risk Level 11

Recommendation 11

3.2 Immutable Admin Address (Resolved) 12

Risk Level 12

Recommendation 12

Table of contents 1 /19

3.3 Usage of Unchecked Arithmetics (Resolved) 13

Risk Level 13

Recommendation 13

3.4 Missing Account Flag Checks (Resolved) 14

Risk Level 14

Code Location 14

Recommendation 14

3.5 Unrecoverable Errors (Resolved) 15

Risk Level 15

Recommendation 15

3.6 Inconsistency in Rent Calculations (Resolved) 16

Risk Level 16

Code Location 16

Recommendation 16

4 Attack Vector Analysis 17

4.1 Predictable Randomness 18

Risk Analysis 18

4.2 Re-entrancy and Race Condition 19

Risk Analysis 19

Table of contents 2 /19

3 /19

Executive overview

Executive overview 4 /19

1 Executive Overview

1.1 Introduction

Feed protocol provides fast, cost-effective access to secure and efficient randomness for blockchain

applications.

In response to a request from Feed Protocol, IronNode, conducted a thorough security audit of the Feed

Protocol to ensure its integrity, security, and user trustworthiness. The audit was carried out from April 30th,

2024 to May 15th, 2024. After the findings shared with the customer, IronNode carried out a verifying security

audit for the Feed Protocol.

1.2 Audit Summary

The security audit team at IronNode was allocated two weeks to conduct an extensive review of the Feed

Protocol. A dedicated team, including a lead security engineer with profound expertise in blockchain

technology, smart contract security, and cybersecurity, conducted the audit.

Executive overview 5 /19

1.2.1 Objectives of the Audit

Ensure the Robustness of Business Logic: Validate the underlying business logic of Feed Protocol for any

security flaws that could be exploited maliciously.

Fee Structure Integrity: Verify that the one-time fee model is implemented securely and operates as

intended without hidden risks.

Smart Contract Examination: Conduct in-depth testing of the smart contracts to identify potential

vulnerabilities, such as reentrancy attacks, overflow bugs, and improper exception handling.

User Interaction Security: Evaluate the security protocols concerning user interactions with the platform

to ensure that sensitive user data is handled securely.

External Dependency Security: Review all external libraries and dependencies used in the protocol to

confirm they do not introduce security vulnerabilities.

Audit Trails and Monitoring: Check the adequacy of the logging and monitoring mechanisms that help in

identifying and mitigating potential threats in real-time.

1.3 Scope

1.3.1 Code Repositories

feed-protocol

Branch: main

Commit ID: https://github.com/MintLabsDev/feed-protocol/commit/656cdefe36e4106a5ae3f6073b23cc8d8938f5f0

Executive overview 6 /19

1.4 Assessment summary & findings overview

Critical High Medium Low Informational

0 0 3 3 0

Security analysis Risk Level Remediation date

Non-Present Fallback Addresses of Off-

chain Components
mEDIUM resolved

Immutable Admin Address mEDIUM resolved

Usage of Unchecked Arithmetics mEDIUM resolved

Missing Account Flag Checks low resolved

Unrecoverable Errors low resolved

Inconsistency in Rent Calculations low resolved

7 /19

Application Flow Analysis

Application Flow Analysis 8 /19

2 Feed Protocol
This section of the report provides an in-depth analysis of the application flow for the Feed Protocol contract.

The
 analysis covers the logical flow of the code, with an emphasis on two primary roles: User and Admin.

2.1 User Role

The user role encompasses wallet addresses that interact with the Feed Protocol.

2.1.1 Functions

InvokeRNG: Allows users to generate a pseudo random number using pyth price feeds, clock and slot

number.

Application Flow Analysis 9 /19

2.2 Admin Role

The admin role is the entity responsible for managing configuration settings and collecting fee over the Feed

Protocol.

2.2.1 Functions

InitConfig: Allows admin to initialize the passed account. Can only be called once.config_account

SetConfig: Allows admin to update the passed account.config_account

CollectFee: Allows admin to collect fee from the passed account.fee_account

InitCurrentFeed: Allows admin to initialize the passed account. Can only be called

once.

current_feed_account

UpdateCurrentFeed: Allows admin to update the passed account.current_feed_account

10 /19

Findings

Findings 11 /19

3 Findings

3.1 Non-Present Fallback Addresses of Off-chain
Components (Resolved)

Relying only on Pyth Oracles for input data, creates single point of failure. Any disruptions in Pythnet or

Wormhole, such as the incident in January 2024, could delay or halt the number generation processes.

3.1.1 Risk Level

Medium

3.1.2 Recommendation

Implement fallback mechanisms to alternate oracles to ensure continuous operation during disruptions.

Findings 12 /19

3.2 Immutable Admin Address (Resolved)

The admin address stored in the variable is hard-coded at multiple points and should be

stored in a manner that allows for reinitialization. When an admin change is necessary, the inability to

effectively transfer contract management leads to operational risks.

authority_address

3.2.1 Risk Level

Medium

3.2.2 Recommendation

Implement fallback mechanisms to alternate oracles to ensure continuous operation during disruptions.

Allow for reinitialization of the admin address to improve maintainability.

Store and in a configurable account to change it when it's necessary.fee_account authority_address

Findings 13 /19

3.3 Usage of Unchecked Arithmetics (Resolved)

The lack of overflow and underflow checks in arithmetic operations can lead to unexpected behavior, including

but not limited to incorrect calculations, contract logic failures, or vulnerabilities that could potentially be

exploited by attackers to manipulate the contract's state or logic in unintended ways. In the context of smart

contracts, such vulnerabilities are particularly concerning as they could lead to financial loss and compromise

contract integrity.

3.3.1 Risk Level
Medium

3.3.2 Recommendation
Utilize `checked_*` functions (or their alternatives) to ensure operations are safe and return error messages in

case of failure. Handling errors improve the contract's reliability.

Example:

offset1
vec_for_offset_randomization[(offset_randomization_number_array[] ()) (

)];

=
. .

:: ? as
0 49checked_sub ok_or F

eedError ArithmeticError usize

Unit testing helps discovering this kind of issues before compiling a release version.

Findings 14 /19

3.4 Missing Account Flag Checks (Resolved)

Several functions lack necessary account flag checks. Furthermore, the program does not verify Pyth account

addresses against those specified on the Pyth website, which can lead to using incorrect or unauthorized data

sources.

3.4.1 Risk Level

Low

3.4.2 Code location

In , the address does not check for writable and owner flags.init_current_feed current_feed

In , the address does not check for writable and owner flags.init_collect_fee fee_account

In , the address lacks writable checks, and lacks signer and owner flag

checks.

collect_fee authority fee_account

In , the account lacks signer and writable checks, the temporary account lacks signer

checks, and account lacks writable checks.

randomize payer

fee_collect

3.4.3 Recommendation

Ensure all necessary account flag checks are implemented in the respective functions.

Verify Pyth account addresses against the official sources specified on the Pyth website to ensure the

integrity and authenticity of the data being used.

Consider using the Anchor framework to manage these checks and control vulnerabilities like Account

Cosplay.

Findings 15 /19

3.5 Unrecoverable Errors (Resolved)

The usage of macros at multiple points in the code generates unrecoverable errors. Unrecoverable

errors result in ambiguity and a poor user experience.

panic!()

3.5.1 Risk Level

Low

3.5.2 Recommendation

Replace macros with readable error messages to ensure better error handling and system stability.panic!()

Findings 16 /19

3.6 Inconsistency in Rent Calculations (Resolved)

Pre-calculating values can lead to incorrect or incomplete results. This approach might not accurately
reflect the required balance for different account sizes, potentially causing account creation or transaction
failures. Accurate rent calculation is crucial for maintaining the stability and reliability of the program.

rent

3.6.1 Risk Level
Low

3.6.2 Code location

src/processor.rs (Line 502)

 (accounts []) {

		
		
 value fee_account lamports () feed rent;

		
		
 }

pub fn : & ->
...

...

...

let = ** . . - .
...

...

collect_fee AccountInfo ProgramResult

borrow_mut

src/processor.rs (Line 79-85)

pub fn : & : & ->
...

...

let = ::
.

.

. + .

...

...

 (accounts [], program_id) {

	
	
 create_ix (

 payer key,

 temp key,

 feed fee feed rent,

 ,

 program_id,

);

 }

randomize AccountInfo Pubkey ProgramResult

system_instruction create_account

0

3.6.3 Recommendation
Use the function from to calculate rent accurately based on the
account size.

minimum_balance solana_program::rent::Rent

17 /19

Attack Vector Analysis

Attack Vector Analysis 18 /19

4 Attack Vector Analysis

4.1 Predictable Randomness
An attacker attempts to predict the RNG outcome by exploiting the deterministic nature of the price data,

timestamps, and slot numbers.

4.1.1 Risk Analysis

The price data, timestamps, slots and offsets are publicly accessible, the attacker can leverage this information

to simulate and predict RNG outcomes.

New blocks can be proposed approximately every 400 milliseconds in Solana, and

,

since:�

�� The offsets used in the RNG logic are updated with each transaction, adding a layer of unpredictability�

�� The exact timing of when a transaction is included in a block is difficult to control precisely, even if the

attacker submits transactions rapidly�

�� The account locks over the accounts prevent multiple transactions from being processed

simultaneously, limiting the attacker's ability to manipulate or predict the RNG outcome.

While theoretically possible, the combination of these factors makes it highly improbable for an attacker to

consistently predict the RNG outcome in real-world scenarios.

However, the risk of a predictable outcome increases when the protocol is stale, as the offset mechanism

becomes less effective in such cases.

the Feed Protocol utilizes an

offset mechanism to improve entropy of the pRNG system. This combined with account locks over the

 accounts, makes predicting the outcome of this transaction extremely challenging in practice

Constant activity of the protocol helps maintain the security of the

outcome.

To further enhance the entropy of the RNG operation, the output of the Feed Protocol could be combined with

different slicing mechanisms or modular arithmetic by the client. This additional step can add an extra layer of

entorpy to the final result.

CurrentFeed

CurrentFeed

Attack Vector Analysis 19 /19

4.2 Re-entrancy and Race Condition
An attacker attempts to exploit the timing and state updates of the RNG protocol by sending multiple

transactions in rapid succession, causing race conditions or re-entrancy issues.

�� Attacker waits for a period of high network congestion or slow transaction processing�

�� Attacker submits multiple transactions that call the `randomize` instruction almost simultaneously�

�� Attacker aims to exploit any delay or inconsistency in the account state updates to gain an advantage in

generating predictable RNG outcomes or manipulating the state.

4.2.1 Risk Analysis

Attacker exploits this to execute multiple instructions before the account state is fully updated, leading to

inconsistent or manipulated outcomes. High transaction volume might cause delays or race conditions in

updating the account states, leading to potential exploits.

Since there'll be account locks over the account, and due to Solana's depth restriction of CPIs, this

vector is safe. Atomic and consistent state updates will prevent race conditions and re-entrancy issues.

CurrentFeed

Thank you for choosing us!

ironnode.io

